OECD Regional Statistics - Metropolitan Regions
Abstract
In assessing regional competitiveness policies, the OECD Territorial Development Policy Committee and its Working Parties on Territorial Indicators and Urban Policy, are increasingly called to compare the economic and social performances of Metropolitan Regions across member countries.
A Metropolitan Region typically consists of a core area with significant concentration of employment or population and a surrounding area densely populated and closely tied with the core.
Data sources used
The Metropolitan database contains data for 281 metro areas with a population of 500,000 or more over 30 OECD countries. These metro areas follow a harmonized functional definition developed by the OECD, in cooperation with the European Commission.
Further information read the publication:
http://www.oecd.org/regional/redefiningurbananewwaytomeasuremetropolitanareas.htm%5D.%20Additional%20information%20can%20be%20found%20in%20the%20following%20link:%20http://measuringurban.oecd.org/content/The%20OECD%20Metropolitan%20eXplorer.pdf
Reference period
The Regional Database contains annual data from 2000 to the most recent available year.
******************************************************************************** * * * OECD STATISTICS * * PARIS OECD Regional Statistics: Metropolitan Regions * * * * Internet & DVD: DSI DATA SERVICE & INFORMATION * * D-47476 Rheinberg P.O. Box 1127 * * Phone: +49 2843-3368 Fax: -3230 * ******************************************************************************** STRUCTURE OF THE CODE : XXXXX / XX / XX SUB-CODES : 1 XXXXX.... Country/Region (Territorial level 2) 2 .....XX.. Blank 3 .......XX Variable SUB-CODE 1 : Country/Region (Territorial level 2) ----------- AUS Australia AUS01 .Sydney AUS02 .Melbourne AUS03 .Brisbane AUS04 .Perth AUS05 .Adelaide AUS06 .Gold Coast-Tweed Heads AUT Austria AT001 .Vienna AT002 .Graz AT003 .Linz BEL Belgium BE001 .Brussels BE002 .Antwerp BE003 .Ghent BE005 .Liege CAN Canada CAN01 .Edmonton CAN04 .Calgary CAN06 .Winnipeg CAN09 .Vancouver CAN16 .Quebec CAN20 .Montreal CAN21 .Ottawa-Gatineau CAN26 .Toronto CAN29 .Hamilton CHE Switzerland CH001 .Zurich CH002 .Geneva CH003 .Basel CHL Chile CL010 .Valparaφso CL011 .Santiago CL020 .Concepci≤n CZE Czech Republic CZ001 .Prague CZ002 .Brno CZ003 .Ostrava DEU Germany DE001 .Berlin DE002 .Hamburg DE003 .Munich DE004 .Cologne DE005 .Frankfurt DE006 .Essen DE007 .Stuttgart DE008 .Leipzig DE009 .Dresden DE010 .Dortmund DE011 .Dⁿsseldorf DE012 .Bremen DE013 .Hanover DE014 .Nuremberg DE015 .Bochum DE027 .Freiburg im Breisgau DE033 .Augsburg DE034 .Bonn DE035 .Karlsruhe DE040 .Saarbrⁿcken DE501 .Duisburg DE502 .Mannheim DE504 .Mⁿnster DE507 .Aachen DNK Denmark DK001 .Copenhagen EST Estonia EE001 .Tallinn ESP Spain ES001 .Madrid ES002 .Barcelona ES003 .Valencia ES004 .Seville ES005 .Zaragoza ES006 .Mßlaga ES008 .Las Palmas ES019 .Bilbao FIN Finland FI001 .Helsinki FRA France FR001 .Paris FR003 .Lyon FR004 .Toulouse FR006 .Strasbourg FR007 .Bordeaux FR008 .Nantes FR009 .Lille FR010 .Montpellier FR011 .Saint-╔tienne FR013 .Rennes FR026 .Grenoble FR032 .Toulon FR203 .Marseille FR205 .Nice FR215 .Rouen GRC Greece GR001 .Athens GR002 .Thessalonica HUN Hungary HU001 .Budapest IRL Ireland IE001 .Dublin ITA Italy IT001 .Rome IT002 .Milan IT003 .Naples IT004 .Turin IT005 .Palermo IT006 .Genova IT007 .Florence IT008 .Bari IT009 .Bologna IT010 .Catania IT011 .Venice JPN Japan JP003 .Sapporo JP013 .Sendai JP015 .Niigata JP020 .Toyama JP021 .Nagano JP023 .Kanazawa JP024 .Utsunomiya JP025 .Maebashi JP026 .Mito JP030 .Tokyo JP031 .Kofu JP034 .Nagoya JP036 .Numazu JP038 .Osaka JP039 .Shizuoka JP040 .Anjo JP042 .Yokkaichi JP046 .Himeji JP047 .Toyohashi JP048 .Hamamatsu JP050 .Okayama JP051 .Kurashiki JP052 .Fukuyama JP053 .Hiroshima JP054 .Takamatsu JP055 .Wakayama JP059 .Tokushima JP064 .Kitakyushu JP065 .Matsuyama JP066 .Fukuoka JP067 .Kochi JP071 .Oita JP074 .Kumamoto JP075 .Nagasaki JP077 .Kagoshima JP078 .Naha KOR Korea KR004 .Seoul Incheon KR015 .Cheongju KR018 .Daejeon KR022 .Pohang KR025 .Daegu KR026 .Jeonju KR029 .Ulsan KR032 .Busan KR033 .Changwon KR035 .Gwangju MEX Mexico MEX01 .Mexicali MEX02 .Tijuana MEX05 .Jußrez MEX08 .Hermosillo MEX10 .Chihuahua MEX16 .Reynosa MEX19 .Monterrey MEX20 .Torre≤n MEX21 .Saltillo MEX22 .Culiacßn MEX24 .Durango MEX28 .Tampico MEX29 .San Luis Potosφ MEX31 .Aguascalientes MEX33 .Benito Jußrez MEX34 .Le≤n MEX35 .MΘrida MEX37 .Guadalajara MEX38 .Irapuato MEX40 .QuerΘtaro MEX42 .Celaya MEX46 .Pachuca de Soto MEX50 .Morelia MEX51 .Mexico City MEX52 .Xalapa MEX55 .Toluca MEX59 .Veracruz MEX60 .Puebla MEX61 .Cuernavaca MEX70 .Centro MEX73 .Oaxaca de Jußrez MEX74 .Acapulco de Jußrez MEX75 .Tuxtla GutiΘrrez NLD Netherlands NL001 .The Hague NL002 .Amsterdam NL003 .Rotterdam NL004 .Utrecht NL005 .Eindhoven NOR Norway NO001 .Oslo POL Poland PL001 .Warsaw PL002 .L≤dz PL003 .Krak≤w PL004 .Wroclaw PL005 .Poznan PL006 .Gdansk PL009 .Lublin PL010 .Katowice PRT Portugal PT001 .Lisbon PT002 .Porto SWE Sweden SE001 .Stockholm SE002 .Gothenburg SE003 .Malm÷ SVN Slovenia SI001 .Ljubljana SVK Slovak Republic SK001 .Bratislava GBR United Kingdom UK001 .London UK002 .Birmingham (UK) UK003 .Leeds UK004 .Bradford UK005 .Liverpool UK006 .Manchester UK007 .Cardiff UK008 .Sheffield UK009 .Bristol UK010 .Newcastle UK011 .Leicester UK017 .Portsmouth UK023 .Nottingham UK097 .Glasgow UK098 .Edinburgh USA United States US003 .Seattle US012 .Portland US014 .Minneapolis US033 .Milwaukee US035 .Madison US038 .Buffalo US039 .Grand Rapids US044 .Albany US045 .Detroit US048 .Boston US055 .Chicago US060 .Providence US065 .Toledo (US) US069 .Cleveland US070 .Des Moines US077 .Omaha US081 .Akron US084 .New York US089 .Salt Lake City US097 .Pittsburgh US103 .Harrisburg US106 .Philadelphia US107 .Columbus US114 .Denver US115 .Indianapolis US117 .Dayton US122 .Baltimore US124 .Cincinnati US125 .Washington US128 .Kansas City US133 .Colorado Springs US134 .Saint Louis (US) US135 .Sacramento/Roseville US141 .Louisville US146 .San Francisco US147 .Wichita US149 .Richmond US154 .Norfolk-Portsmouth-Chesapeake-Virginia beach US155 .Fresno US159 .Las Vegas US160 .Nashville US161 .Tulsa US170 .Raleigh US174 .Oklahoma city US178 .Charlotte US180 .Albuquerque US181 .Memphis US186 .Little Rock US190 .Los Angeles US195 .Columbia US196 .Atlanta US202 .Phoenix US205 .Birmingham (US) US209 .Dallas US210 .San Diego US212 .Fort Worth US213 .Charleston US223 .Tucson US227 .El Paso US233 .Baton Rouge US234 .Austin US237 .Jacksonville US241 .New Orleans US242 .Houston US245 .San Antonio US250 .Orlando US251 .Clearwater/Saint Petersburg US252 .Tampa US259 .Miami US261 .Mcallen SUB-Code 3 : Variable ----------- Demographic indicators 00 Total population of the metropolitan area (persons) 01 .Population of the city area (persons) 02 ..Population, City, Youth (0-14) 03 ..Population, City, Working age (15-64) 04 ..Populaiton, City, Old (65more) 05 .Population of the commuting zone area (persons) 06 ..Population, Commuting Zone, Youth (0-14) 07 ..Population, Commuting Zone, Working age (15-64) 08 ..Populaiton, Commuting Zone, Elder (65more) 09 .Population, Total, Youth (0-14) 10 .Population, Total, Working age (15-64) 11 .Populaiton, Total, Old (65more) 12 .Old-age-dependency ratio 13 .Youth-dependency ratio 14 Population of the metropolitan area as a share of national value (%) 15 .Youth population of the metropolitan area as share of national value (%) 16 .Working age population of the metropolitan area as a share of national value (%) 17 .Elderly population of the metropolitan area as a share of national value (%) 18 .Youth population of the core area as a share of the total metropolitan area youth population (%) 19 .Working age population of the core area as a share of the total metropolitan area working age population (%) 20 .Elderly population of the core area as a share of the total metropolitan area elderly population (%) 21 Population density (persons per km2) 22 .Population density of the city area (persons per km2) 23 .Population density of the commuting zone (persons per km2) Land cover indicators 24 Total land area (km2) 25 .Total land area of the city (km2) 26 .Total land area of the commuting zone (km2) 27 Metropolitan land share of national value (%) 28 .City land share over Metropolitan land area (%) 29 .Commuting zone land share over Metropolitan land area (%) 30 Urbanised area (km2) 31 Urbanised area growth 32 Urbanised area share (%),, 33 Green area per million people (square meters per million person),, Urban form 34 Polycentricity 35 Concentration of population in the core (%) 36 Sprawl index Territorial organisation 37 Local governments (count) 38 Local governments in the core (count) 39 Territorial fragmentation 40 Average population size of local government Economic indicators 41 GDP (millions US$) 42 GDP of the metropolitan area as a share of national value (%) 43 Labour productivity 44 GDP per capita (US$) Income and inequality 45 Equivalised household disposable income 46 Gini index 47 Spatial ordinal entropy index at a 1,000 meters scale Environmental indicators 48 CO2 emissions per capita (tonnes per inhabitant) 49 .CO2 emissions per capita from transport (tonnes per inhabitant) 50 .CO2 emissions per capita from energy industry (tonnes per inhabitant) 51 CO2 emissions of the metropolitan area as a share of national value (%) 52 .CO2 energy emissions of the metropolitan area as a share of the national energy industry emissions (%) 53 .CO2 transport emissions of the metropolitan area as a share of the national transport emissions from transport (%) 54 Estimated average exposure to air pollution (PM2.5) based on imagery data Labour indicators 55 Labour force (persons) 56 .Labour force of the metropolitan area as a share of national value (%) 57 Employment (persons) 58 .Employment of the metropolitan area as a share of national value (%) 59 Employment as a share of the working age population (%) 60 Unemployment (persons) 61 .Unemployment of the metropolitan area as a share of national value (%) 62 Unemployment as a share of the labour force (%) 63 Participation rate (%) Innovation indicators 64 PCT patent applications (count) 65 PCT patent applications of the metropolitan area as % of national value 66 PCT patents applications per 10,000 inhabitants Units: ------ Units of measure refer to persons for Population by age and sex, Labour Force, Employment, Unemployment and Annual Average Population. Regional surface is expressed in square metres, while population density refers to persons per square metre. GDP in current and constant prices is expressed in million of national currency, while GDP in PPP is expressed in million of Dollars. Unemployment, Participation and Employment rates are expressed as percentages. Patents statistics are expressed as per million population.